
Image-based Adaptive Meshing

Andrew C.E. Reid and Stephen A. Langer∗

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD, 20899

Rhonald C. Lua and Valerie R. Coffman

Materials Science and Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD, 20899

R. Edwin Garćıa

School of Materials Engineering

Purdue University

West Lafayette, IN 47907-2044

(Dated: August 28, 2007)

INTRODUCTION

Most finite element packages require as input numerical representations of straight lines,

flat planes, and simple curves that make up the boundaries of the structure to be simulated.

For microstructures, such as the one shown in figure 1, converting the boundaries to a simple

numerical representation by hand is a tedious task. In this paper, we will describe how the

software package OOF (named for “Object Oriented Finite-Elements”) [1, 2, 3] circumvents

this difficulty by creating meshes directly from images – the mesh itself is the geometric

description of the microstructure. Through utilizing a unique, image-based, adaptive mesh-

ing technique, OOF is capable of parsing experimental data relating polyphase, polydomain

materials with complex geometries into a representation that is appropriate for use in a finite

element simulation. [need to reword to emphasize how other packages make a distinction

between the mathematical representation of the geometry and the mesh]

OOF is a unique tool for performing virtual experiments on microstructure geometries

extracted directly from 2D experimental images. OOF has been used successfully in a wide



2

FIG. 1: Microstructure Image Example: A micron scale SEM image of plasma-etched Si3N4,

provided by Chun-Hway Hsieh at Oakridge National Laboratory) [4].

variety of applications including studying the relationship between thermal properties and

the structure of plasma-sprayed zirconia coatings [5], the effects of microstructure on the

macroscopic mechanical properties of glass-matrix composites [6], the role of texture in the

macroscopic response of polycrystalline piezoelectric materials [7], and the modeling and

design of electrode microstructures in rechargeable lithium-ion batteries [8].

One common method of forming a finite element mesh from an image is to define a square

element for each pixel [9, 10]. This has two major pitfalls. First, it usually creates too many

elements – homogenous regions can adequately be described by larger elements. Second, it

introduces jagged edges where the boundary in the real material is smooth, which can lead

to artificial results such as stress concentrations at corners. Since the image is an imperfect

representation of the actual material, and the mesh is an approximation of the image, it

does not make sense to force the boundaries of the mesh to line up exactly with the image

boundaries [1].

Most current meshing strategies involve triangulating a surface and tetrahedralizing the

interior. This strategy suffers from the pitfall of creating large, un-meshable voids [more

specific, name theorem, find references, relevant in 2D?]. OOF’s meshing system has two

advantages over other strategies. Because OOF’s meshing method begins with a space-filling

mesh that is only modified by methods that preserve the space-filling quality of the elements,

there will be no unmeshable voids or (very rarely) illegal elements.



3

IMAGE-BASED MESHING

-briefly explain how to process image to prepare for meshing - threshold and assign

materials? SAL: Mention pixel categories, goal is for element edges to follow boundaries of

pixel categories.

Once the material regions and their properties have been assigned, OOF can create the

mesh directly from the image.

The technique OOF uses is to create an initial mesh that is a regular, space-filling grid

of rectangles or triangles, with user-specified dimensions. In order to optimize this mesh

and align it with the boundaries of the microstructure, OOF provides a number of methods

for mesh adaptation. Several methods move the nodes in order to improve homogeneity or

shape quality. Other methods change the topology of the mesh by refining inhomogenous

elements, merging homogenous elements, or correcting for badly-shaped elements.

Quantifying the Quality of the Mesh

[RCL: This is just my suggestion (it is wordy; I’m just thowing out ideas. Will pare it

down): For an automated meshing procedure to work, a figure of merit, or a quantitative

measure of the quality of the elements in the mesh, must be introduced that has as few

components as possible. This quantitative measure(s) must reflect the degree to which the

mesh represents the microstructure. It also must reflect the quality of the elements as far

as being appropriate to a finite element calculation is concerned.

To this end, we define two element energies: the shape energy and the homogeneity

energy. We use the word “energy” because the mesh is considered a good representation

of the microstructure, or good for a finite element calculation, if the value of the energy is

low. The mesh adaptation routines are oriented towards lowering the energy of a mesh. The

analogy is all the more appropriate because many of the mesh adaptation routines work by

moving the nodes in a mesh (see Figure 3), as if the nodes are particles under the influence

of some fictitious potential or force field. ]

One of the methods for mesh adaptation is the anneal method (section ), which moves

nodes randomly and accepts those that lower a measure of mesh quality [2, 3] analogous

to an effective energy. The effective energy used by the anneal method and other mesh



4

adaptation algorithms in OOF conists of two parts: the shape energy, which quantifies the

quality of the shapes of elements, and the homogeneity, which measures how well the mesh

matches the pixel regions.

We want to minimize the shape energy because we want to avoid elements with high aspect

ratios which lead to poor finite element convergence. Equilateral triangles and squares, which

are ideal, have a shape energy of zero while thin and flat elements have higher energies

[RCL: According to this article [11, 12] by the same guy who wrote “An Introduction to

the Conjugate Gradient Method Without the Agonizing Pain”, thin elements may not be

so bad. At least, it is bad in a different way from flat elements]. Degenerate elements with

colinear corners, have the maximum shape energy, which is normalized to 1.0. For triangular

elements, the shape energy is given by

Eshape = 1 − 4
√

3
A

L2
0 + L2

1 + L2
2

(1)

where A is the area of the triangle and Li are the lengths of the sides. This function gives a

value of 0 for equilateral triangles and higher values for narrow triangles. For quad elements,

OOF calculates a quality measure for each corner [13]

q = 2
A‖

L2
0 + L2

1

(2)

where A‖ is the area of the parallelogram formed by the two edges adjacent to the corner in

question. L0 and L1 are the lengths of the adjacent sides. OOF calculates the shape energy

for a quad by constructing a weighted average from the q’s at the corner with the minimum

q (qmin) and at the corner opposite it (qopp).

Eshape = 1 − ((1 − wopp)qmin + woppqopp). (3)

The weighted average is taken to make sure that any node movement changes the energy,

even if it doesn’t shift the minimum. Without the weighted average, some node moves would

not register a response, and would behave badly in some of the routines. [Word this better]

The homogeneity (see Figure 2) is a measure of how close an element is to enclosing a

region that contains a single material:

H =
max {ai}

A
(4)

where ai are the areas within an element that belongs to each material phase. If an element

is filled with only one material, H = 1. The corresponding homogeneity energy is defined



5

FIG. 2: If the three different pixel colors represent different materials, then the triangle in the

upper right is completely homogeneous (H = 1.0), the central triangle is inhomogeneous (H ≈ 0.5)

and the leftmost triangle is even more inhomogeneous (H ≈ 0.3).

by

Ehom = 1 − H (5)

These two measures can be combined into an effective element energy

E = αEhom + (1 − α)Eshape (6)

where α is a tuneable parameter. When performing several of the mesh adaptation routines,

a user may adjust α according to whether his or her priority is improving shape quality or

homogeneity.

Adaptive Methods

The mesh adaptation routines used in OOF can be classified into two groups: (1) Routines

that move nodes (Movers) and that maintain the connectivity or topology of the starting

mesh (e.g. Anneal, Snap Nodes), and, (2) Routines that split elements and edges (Splitters)

and that change the connectivity of the starting mesh (e.g. Refine, Snap Refine). Routines in

both groups are used to improve overall element energy. The routines and their classifications

are illustrated in Table I.

[VRC: Do we want to call them “splitters”? Merge triangles, for instance, doesn’t split.

Rationalize and swap edges also doen’t necessarily split. If we wanted to be cute, we could

call them “movers” and “shakers”. But maybe “rearrangers” is more descriptive? Or maybe

we shouldn’t force a one word label on them... RCL: I also realized that Merge Triangles

does not “split” an existing element. However, it does change the way elements are split



6

TABLE I: OOF Mesh Adaptation Routines

Group Routine Monte Carlo Snapper Fixer

Movers Anneal ×

(Connectivity of Smooth ×

nodes preserved) Snap Anneal × ×

Snap Nodes ×

Fix Illegal Elements ×

Relax

Splitters Refine

(Topology of Snap Refine ×

mesh changed) Rationalize ×

Split Quads

Merge Triangles

Swap Edges

(it ”unsplits” a quad made of two triangles into a solid quad). “Splitters” is just a single-

word term I came up with to denote the group of routines that change the topology of the

mesh. In general, I think the labels (“Movers”, “Splitters”, “Snappers”, etc.) are helpful in

introducing the various skeleton modification routines and it would not be harmful (as in

politics) to put labels on a related group of routines. Yes, I think it is somewhat cute, but

not an overload of cute, to introduce these labels. I put them in seriously to organize the

routines into one neat table. We could of course vote at the end of the day on whether to

not keep these labels, or expand the labels (e.g. “Movers” to “Preserves connectivity of the

mesh”) and I’d have no problem with it.]

Movers can improve the homogeneity or shape energy of the elements in the mesh without

increasing the number of elements. Unless the initial grid is sufficiently fine, Movers usually

cannot be used to resolve the small features in a microstructure. Splitters are used to

achieve this task by subdiving existing elements and segments and spawning new elements

and nodes. Once the desired element resolution is reached, Movers can then be used to

further improve the mesh.



7

Most of these routines can be flexibly applied to an explicitly selected set of elements,

segments or nodes. Most of the routines can also be targeted to elements or segments that

satisfy certain criteria, such as having a homogeneity below a certain threshold.

Because of the similarity of Movers to steps in a molecular dynamics simulation, some of

these routines (e.g. Anneal, Smooth, Snap Anneal) can be coupled to a type of Metropolis

Monte Carlo method [14]. The factor ∆E in the exponent that enters the Boltzmann factor

P = exp (−∆E/T ) (7)

is the change in the energy (6) of the affected elements. A change in the shape of some

elements can be accepted even if it leads to an increase in the overall element energy, with a

probability given by P . This analogy with molecular dynamics simulations can be pursued

further by explicitly applying fictitious forces on the nodes that may drive the elements to

improve their homogeneity or shape (e.g. the Relax routine).

One can also define two subcategories of mesh adaptation routines. The first (Fixer)

can be characterized by its specialized use in correcting or improving an element or group

of elements that were created as a result of repeated application of other mesh adaptation

routines such as Refine or Snap Refine. [SAL: Is Corrector (RCL: or Fixer) really a well

defined term? Can’t Refine be a Corrector too? Split Quads can be used on its own,

not just to correct previous modifications.] These routines (e.g. Rationalize, Fix Illegal

Elements) can be Movers or Splitters. Fixers are more oriented toward improving the shape

quality of the elements in the mesh. The second subcategory of routines (Snappers) places

nodes precisely at the interface or boundary of two different pixel groups (Snap Nodes, Snap

Refine, Snap Anneal). The nodes that get placed at these points along an interface, called

transition points, may be existing nodes or new nodes created along an existing edge or

within an existing element. Snappers are more oriented toward improving the homogeneity

of the mesh. [VRC: I’m not sure the labels “Fixer”, “Snapper”, and “Monte Carlo” are

helpful. I think the same information (the role/usefulness of each method) can be conveyed

in the intros to each of the subsections which should explain what the role of each method

is.]

In the following sections, we describe each mesh adaptation routine used in OOF. We

also decribe a combination of these routines that seems effective in creating a mesh for a

categorized microstructure. This sequence of routines is applied in OOF after providing just



8

a little input and once started requires no feedback from the user.

[SAL: Each of the following subsubsections needs a summary paragraph explaining the

circumstances in which the skeleton modifier would be used, and the effect it has.]

Anneal

(1A) (1B)

(2A) (2B)

(3A) (3B)

FIG. 3: Illustration of some node moves used in OOF. 1A and 1B show a trial move of the Anneal

routine. A target node is displaced by a random vector whose components are taken from a

Gaussian distribution. 2A and 2B show the trial move for the Smooth routine. The target node is

placed at the center of the four neighboring nodes N1,N2,N3 and N4. 3A and 3B show the trial

move for the Snap Anneal routine. The target node is shifted to the transition point (TP ) along

one of the edges incident at the target node.

Anneal moves nodes to random positions (see Figure 3-1A and -1B), accepting or rejecting



9

moves according to a given criterion. It is similar to a simulated annealing simulation in

statistical mechanics, from which it gets its name. Instead of minimizing the free energy of

a system of particles, it minimizes the effective energy of a mesh.

The general procedure for a single iteration of Anneal is as follows:

1. Collect target nodes and reorder randomly to remove any potential artifacts from the

original ordering of nodes. This reordering is repeated at every iteration.

2. Give each node a single chance to move to a randomly assigned new position. OOF

computes the new position from

xnew = xold + δx

ynew = yold + δy

δx and δy are random numbers chosen from a Gaussian distribution of width delta

and mean 0.0. Figure 3-1A shows a target node that is about to move to a new

position. Before making the move, OOF computes the total effective energy of all the

neighboring elements of the node (E1,E2,E3,E4).

3. After moving each node, the given acceptance criterion is used to decide whether the

move is acceptable.

4. If the move is unacceptable according to the acceptance criterion, OOF may still accept

the move if the annealing is being done at a non-zero temperature T . The parameter

T sets the effective temperature of the annealing process. These moves are accepted

with a probability P given in Equation (7), where ∆E is the difference in the effective

energies of the new and old element configurations.

Successful annealing usually requires a number of iterations. On each iteration, OOF

makes one attempt to move each node. OOF can be set to perform a fixed number of itera-

tions of Anneal or to stop after some condition is satisfied. As with conventional simulated

annealing or monte carlo simulations, if the change in energy or acceptance rate gets too

small, the annealing process is improving the mesh effectively. [RCL: I think this statement,

as well as the one it replaced, are both true. From the manual: “If the change in energy or

the acceptance rate gets too small, the annealing process is not being effective at improving



10

the Skeleton.” If the parameters were set such that the acceptance rate is too small, then

the annealing may not be effective. It is possible though that the mesh is good to start with.

Now if in the first few iterations of anneal the acceptance rate is significant, and later it got

small, that could be a signal that the mesh was significantly improved by annealing.]

Smooth

Smooth moves nodes to the average position of their neighbors (see Figure 3-2A and -2B)

in order to smooth out gradients in node density in a mesh. This tends to improve the shape

of the elements. Typically, it takes about 3 iterations of Smooth to get a desirable result.

The general procedure for a single iteration is very similar to that for Anneal, except that

in step 2, each target node is given a single chance to move to the average position of its

neighbors. For this purpose, neighbors are defined as nodes that share a segment with the

target node (N1,N2,N3,N4).

The technique of moving nodes to the average position of its neighbors in the mesh is

also used to fix illegal elements (section ).

Snap Anneal

Snap Anneal is very similar to Anneal. In Snap Anneal, the trial move consists of placing

the target node at a nearby pixel boundary, called a transition point, located along a segment

that contains the target node as an endpoint (see Figure 3-3A and -3B).

Snap Nodes

Snap Nodes moves nodes to improve the elements’ homogeneity energy. If an element

edge crosses over regions of the microstructure belonging to different pixel categories, then

Snap Nodes tries to move one of the element coreners to the crossing point. These points

are precisely the transition points used in Snap Anneal and illustrated in Figure 3-3B. Snap

Nodes differs from Snap Anneal by having correlated snaps of two nodes. That is, more than

one node of an element may be moved at the same time in order to increase the homogeneity.

The general procedure for snapping nodes is as follows:



11

Priority 1 2 3 1 2

Type

Possible Snaps

FIG. 4: Snapping Nodes.

1. Scan the current mesh to find candidate nodes for snapping.

2. Loop over the elements containing snappable nodes, and identify the transition points

along each segment of each element.

3. Find all possible snaps involving one or two nodes of a single element, assigning a

priority to each according to the arrangement of its transition points. The priorities

are listed in Figure 4.

4. Starting with the highest priority snaps (and choosing randomly from snaps with equal

priorities), attempt to actually move the nodes. The move is accepted or rejected

according to a given criterion. When more than one snap is possible for one element,

all are attempted and the best is chosen. After successfully snapping the nodes of an

element, the nodes of any neighboring snappable elements are attempted, regardless

of their priority.

Snapping nodes tends to produce badly-shaped elements when the weighting in the ele-

ment energy (α) favors homogeneity. However, Snap Nodes is really a homogeneity-oriented

operation, and works best when given a large α. It is usually best to allow it to create

badly-shaped elements, and to clean up afterwards by applying the Rationalize routine.



12

Fix Illegal Elements

(A) (B)

FIG. 5: Before (A) and after (B) application of the Fix Illegal Elements routine on a mesh. In (A),

the elements that are fixed include a flipped triangle (left), and a non-convex quadrilateral. Both

were intentionally created using OOF’s interactive graphical toolboxes to select and move nodes.

Illegal elements are elements having corners that subtend an angle greater than 180

degrees or less than 0 degrees. For quadrilateral elements, these include elements that have

non-convex shapes. Fix Illegal Elements modifies and corrects these elements by moving one

or more nodes in the element to the average position of its neighboring nodes, just like in

Smooth. The move is accepted or rejected solely by whether or not it reduces the number

of illegal elements in the vicinity of the node.

In many cases, it is sufficient to fix an element by applying this smoothing procedure to

the nodes at the offending corners. However, this procedure may not improve the element

when the smoothing is applied to a node located at a corner with an angle very close to

zero. In this case, the nodes at the other corners should be tested and moved as well.

An example of the Fix Illegal Element procedure is illustrated in Figure 5. On one pass

through the mesh, Fix Illegal Elements attempts to move each node in an illegal element

once, choosing nodes in a random order. It may not be successful on the first pass, so it

repeats the process until there are no more illegal elements, or when the routine has tried

many number of times.

After an element has been fixed, it is possible that the mesh is no longer a good repre-

sentation of the microstructure. This is because the Fix Illegal Elements routine does not

pay attention to element homogeneity or shape.



13

Relax

Relax is like a deterministic version of Anneal. It works by giving each element an

isotropic elastic modulus and an elastic driving force with two components. The first com-

ponent is isotropic and proportional to the element’s homogeneity energy. This causes

inhomogeneous elements to shrink. The second part is anisotropic and proportional to the

traceless part of the element’s moment of inertia tensor (the masses are concentrated at

the nodes). This drives the elements’ shapes toward squares for quadrilaterals and towards

equilateral triangles for triangles. The relative weight of the two terms can be adjusted [α?].

Using these two driving forces, the positions of the nodes are computed for a fixed number

of time steps.

Refine

Refine is a routine that chops its target elements and their neighbors into smaller pieces

(see Figure 6-B). This adds more degrees of freedom to the mesh, which allow it to adapt

better to the microstructure. Refinement by itself is rarely sufficient to create an acceptable

mesh – it must be combined with other routines that move nodes or place nodes at pixel

boundaries, such as Anneal or Snap Refine.

The steps involved in refining a mesh are:

1. Find the element edges that need to be refined. These edges may be chosen from edges

of heterogeneous elements, or from long edges of skinny elements.

2. Sometimes, the way in which the elements will be subdivided (for instance, whether

the edge is to be bisected or trisected, or if a quadrilateral should only be refined into

quadrilaterals) requires extra segments to be marked. In these cases a second pass is

made through the mesh, marking additional segments.

3. After the segments are marked, each element is replaced by a suitable collection of

smaller elements, such that each marked segment of the old mesh turns into a set

number of segments of the new mesh. The rules sometimes allow more than one way

of subdividing an element. In those cases, the total effective energy of the new elements

is computed, and the configuration with the lowest energy is used.



14

(A) (B)

(C) (D)

FIG. 6: Illustration of the refinement of a target element using Refine and Snap Refine. (A) The

target for refinement is the region defined by the central element. (B) One application of the Refine

routine splits elements and bisects edges. (C) One application of Snap Refine subdivides elements

and splits edges at transition points. (D) Four successive applications of Snap Refine improves the

homogeneity but produces thin elements.

[SAL: mention that the advantage of having two passes, one to mark edges and one to

replace elements, is that the replacement step is completely local.]

Snap Refine

Snap Refine attempts to combine the most desirable features of Refine and Snap Nodes

into a single method. The routine operates like Refine, except that the element segments

are split by points located at the interface of two different pixel categories (see Figure 6-C).

These points become the corners of new elements that subdivide the original elements.

Snap Refine can yield a mesh with a comparable homogeneity to a mesh produced by



15

Refine, but often with significantly fewer elements. Snap Refine can also be more flexible

than Snap Nodes in fitting a mesh to a microstructure, because Snap Refine introduces new

nodes and edges that can be made to follow the boundaries of pixel categories and resolve

smaller features in the microstructure.

It may seem obvious that one should always use Snap Refine instead of Refine. Unfor-

tunately, Snap Refine can lead to the creation of very thin elements (see Figure 6-D). The

creation of such badly-shaped elements may be prevented in some cases by telling Snap

Refine to not place a new node within a certain distance of one of the corners of an element

(although this may not be a scale-invariant solution). In general, iterating Snap Refine

produces very bad results, with a lot of very thin elements. A good strategy is often to use

the regular Refine routine first, and to apply Snap Refine just once at the end to snap nodes

and edges to the interface.

Currently, Snap Refine finds at most two transition points along an edge, by scanning the

edge starting from each endpoint. The subdivision of an element may also introduce new

nodes with the element. These nodes may also be located at the interface of pixel categories.

Rationalize

(A) (B)

FIG. 7: Before (A) and after (B) application of the Rationalize routine on the highlighted elements.

In (A), the elements that are fixed by the Rationalize routine include (clockwise from left) a flat

triangle, two quadrilaterals that share a short side, a wide quadrilateral, and two sharp or thin

triangles.

Rationalize fixes badly-shaped elements in a mesh by either removing them or modifying



16

them and their immediate neighbors. Rationalize has three components (called Rationaliz-

ers):

1. Remove short sides - Eliminate the shortest side of a quadrilateral.

2. Split wide quads - Split quadrilaterals with large interior angles.

3. Remove bad triangles - Remove triangles with extreme interior angles.

An example is shown in Figure 7.

Split Quads

(A) (B)

FIG. 8: Before (A) and after (B) application of the Split Quads routine.

[Put Split Quads, Swap Edges, Merge Triangles into one subsubsection?] Split Quads

improves the homogeneity energy of a quadrilateral by splitting it along a diagonal into

two triangles. Applying a Snapper such as the Snap Nodes routine tends to leave some

quadrilaterals tailor-made for splitting along a diagonal. An example is shown in Figure 8.

Merge Triangles

Merge Triangles merges two triangular elements into one quadrilateral element. (see

Figure 9) Given the nature of the process (merging elements), it is easy to see that it focuses

mostly on reducing elements’ shape energy rather than increasing elements’ homogeneity.

It also reduces the overall degrees of freedom in the resulting mesh, thereby decreasing the



17

(A) (B)

FIG. 9: Before (A) and after (B) application of the Merge Triangles routine.

solution time (and accuracy), if the mesh is going to be built from high-order elements. For

meshes made of linear elements (4-noded quads or 3-noded triangles) merging triangles does

not reduce the number of degrees of freedom.

Swap Edges

(A) (B)

FIG. 10: Before (A) and after (B) application of the Swap Edges routine.

Swap Edges rearranges the interior segments of neighboring elements to improve their

shape energy or homogeneity. An example is given in Figure 10.



18

(A) (B)

FIG. 11: (A) Microstructure created from a 484 pixel × 484 pixel image. (B) Mesh with 1851

elements created with OOF’s automatic mesh generation feature. The parameters used were

maxscale = 60 pixels, minscale = 20 pixels and threshold = 0.9.

Automatic Mesh Generation

OOF has a close-to-automatic mesh generation feature built from a sequence of the mesh

adaptation routines described in the previous sections. It was originally conceived with the

goal of using OOF as part of the automated MatCASE [15] framework for computational

materials design.

OOF’s automatic mesh generation feature requires three parameters: (1) A rough size

of the elements in the initial mesh (maxscale). This should correspond to the linear size

of the largest features in the microstructure. (2) A rough size for the smallest elements

in the desired mesh (minscale). This is the resolution to which the elements have to be

refined by the mesh adaptation routines, and should correspond to the linear size of the

smallest features in the microstructure. (3) A homogeneity threshold that determines which

elements will be refined. All elements whose homogeneity is smaller than the threshold

will be subdivided until the element size falls below minscale. These parameters may be

estimated for a class of microstructures based on the intuition of a materials engineer or

from the nature of the physical problem. In some cases, the parameters may be obvious.

For example, minscale may be set to some average pore size in a microstructure.

As an example, we used OOF to generate a mesh for a microstructure consisting of the

484 pixel × 484 pixel image given in Figure 11-A. The light and dark regions define different

phases or materials. For this microstructure, the parameters used were maxscale = 60



19

FIG. 12: (A) Microstructure with initial mesh. (B) Close-up of a portion of the microstructure

and mesh. maxscale is the rough size of each element. The area-weighted average homogeneity

of the elements is 0.846. (C) The mesh after a few applications of the Refine routine. Elements

with homogeneity less than threshold were refined until the resulting elements reached a resolution

given approximately by minscale. At this stage the homogeneity is 0.890. (D) The mesh after

one application of the Snap Refine routine. Note that nodes and edges have been placed at pixel

boundaries. The homogeneity is 0.980. (E) The mesh after two applications of the Rationalize

routine that fixes badly-shaped elements. The homogeneity is 0.981. (F) The mesh after 5 iterations

of the Smooth routine.



20

pixels, minscale = 20 pixels and threshold = 0.9. The resulting mesh overlaid on the

microstructure is given in Figure 11-B.

The main sequence in the automatic mesh generation is depicted in Figure 12. OOF

first creates a mesh with quadrilateral elements. The size of the elements is set so that

the initial mesh resolves features of size maxscale in the microstructure. The mesh is then

refined iteratively with the Refine routine (edges are bisected and α = 0.8), until the linear

dimensions of the smallest elements are smaller than minscale. To get rid of rough corners

and to snap nodes and edges onto boundaries, Snap Refine is applied once. All refinement

operations are applied only to elements whose homogeneity is less than that specified by

threshold. After refining, OOF cleans up the mesh by applying the Rationalize routine

twice. It uses specific Rationalizers to remove short sides of quadrilaterals (those with ratio

of the longest side to the shortest side larger than 5.0), split wide quadrilaterals (those with

angle greater than 150 degrees), and remove bad triangles (those with acute angle less than

15 degrees and obtuse angle greater than 150 degrees). Finally, OOF applies the Smooth

routine after pinning the internal boundary nodes, which OOF unpins when it is done.

Smoothing is done for 5 iterations (with α = 0.3).

COMPARISON TO OTHER METHODS

will need to fill in with data.

3D?

- this approach was designed with extending to 3d in mind

- currently working on 3d

- challenges of adapting to 3d

[Mention microstructure representation in 3D. Simplest is 3D array of pixels or voxels.]

The concept of homogeneity is readily extended to 3D. For the shape quality of an element,

one can define a quality measure analogous to the expression in Equation (1).

q = CV 2/S3 (8)

where V is the volume of the element, S is the surface area of the element, and C is a

constant that normalizes q (C = 216
√

3 for a tetrahedron. Got this from the internet).



21

[It seems defining and evaluating a good q for elements in 2D and 3D is an active field of

research. I like the idea of using the ratio of the radius of the inscribing sphere (or circle)

and the radius of the circumscribing sphere (or circle). It might be computationally more

demanding.]

Many of the 2D mesh adaptation routines have a straightforward extension to 3D. For

some of the Movers (or node moving routines), the extension to 3D is no different from doing

monte carlo or molecular dynamics simulation for particles living in 3D instead of 2D. [If

the paper is going to be submitted to a Computer Science journal, I wonder if the statmech

jargon should be reduced.] As for element refinement in 3D, we clearly have to work with

many more refinement possibilities, even if we only consider a single type of element (e.g.

tetrahedrons). We have worked out a set of rules for refining a tetrahedron into smaller

tetrahedrons given a combination of its edges that have to be bisected [16]. 3D meshing is

bound to be more computationally demanding. Whether new mesh adaptation routines for

3D that does not have a 2D counterpart have to be developed, awaits the development and

testing of OOF 3D.

CONCLUSION

Fill in later.

∗ Electronic address: stephen.langer@nist.gov

[1] Langer, S. A., Fuller, Jr, E. R., and Carter, W. C. Computers in Science and Engineering

3(3), 15–23 (2001).

[2] Langer, S. A., Reid, A. C. E., Garćıa, R. E., Haan, S.-I., Lua, R. C., Carter, W. C., Fuller,

Jr, E. R., and Roosen, A. Webpage. http://www.ctcms.nist.gov/oof/index.html.

[3] Langer, S. A., Reid, A., Haan, S.-I., and Garćıa, R. E. website.

http://www.ctcms.nist.gov/ langer/oof2man/index.html.

[4] Paul, F. B., Sun, E. Y., Plucknett, K. P., Alexander, K. B., Hsueh, C.-H., Lin, H.-T., Waters,

S. B., Westmoreland, C. G., Kang, E.-S., Hirao, K., and Brito, M. E. Journal of the American

Ceramic Society 81(11), 2821–2830 (1998).

mailto:stephen.langer@nist.gov


22

[5] Wang, Z., Kulkarni, A., Deshpande, S., Nakamura, T., and Herman, H. Acta Materiala 51,

5319–5334 (2003).

[6] Cannillo, V., Manfredini, T., Montorosi, M., and Boccaccini, A. Journal of Non-Crystalline

Solids 344, 88–93 (2004).

[7] Garćıa, R. E., Carter, W. C., and Langer, S. A. Journal of the American Ceramic Society

88(3), 750–757 (2005).

[8] Garćıa, R. E., Chiang, Y.-M., Carter, W. C., Limthongkul, P., and Bishop, C. M. Journal of

the Electrochemical Society 152(1), A255–A263 (2005).

[9] Garboczi, E., Bentz, D., and Martys, N. In Methods in the Physics of Porous Media, zen

Wong, P., editor, 1–41. Academic Press, San Diego, CA, (1999).

[10] Roberts, A. and Garboczi, E. J. Amer. Ceram. Soc. 83, 3041–3048 (2000).

[11] Shewchuck, J. (2002). preprint.

[12] Shewchuck, J. (2002). Sandia National Laboratories.

[13] GiD manual. http://gid.cimne.upc.es/.

[14] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. Journal of Chemical

Physics 21, 1087–1092 (1953).

[15] Webpage. http://matcase.psu.edu/index.html.

[16] Java applet. http://www.ctcms.nist.gov/ rlua/FE/refinery/.


	 Introduction
	 Image-based Meshing
	 Quantifying the Quality of the Mesh
	 Adaptive Methods
	 Anneal
	 Smooth
	 Snap Anneal
	 Snap Nodes
	 Fix Illegal Elements
	 Relax
	 Refine
	 Snap Refine
	 Rationalize
	 Split Quads
	 Merge Triangles
	 Swap Edges

	 Automatic Mesh Generation

	 Comparison to Other Methods
	 3D?
	 Conclusion
	 References

